New Approach for Radial Basis Function Based on Partition of Unity of Taylor Series Expansion with Respect to Shape Parameter

Author:

Bawazeer Saleh A.ORCID,Baakeem Saleh S.,Mohamad Abdulmajeed A.ORCID

Abstract

Radial basis function (RBF) is gaining popularity in function interpolation as well as in solving partial differential equations thanks to its accuracy and simplicity. Besides, RBF methods have almost a spectral accuracy. Furthermore, the implementation of RBF-based methods is easy and does not depend on the location of the points and dimensionality of the problems. However, the stability and accuracy of RBF methods depend significantly on the shape parameter, which is primarily impacted by the basis function and the node distribution. At a small value of shape parameter, the RBF becomes more accurate, but unstable. Several approaches were followed in the open literature to overcome the instability issue. One of the approaches is optimizing the solver in order to improve the stability of ill-conditioned matrices. Another approach is based on searching for the optimal value of the shape parameter. Alternatively, modified bases are used to overcome instability. In the open literature, radial basis function using QR factorization (RBF-QR), stabilized expansion of Gaussian radial basis function (RBF-GA), rational radial basis function (RBF-RA), and Hermite-based RBFs are among the approaches used to change the basis. In this paper, the Taylor series is used to expand the RBF with respect to the shape parameter. Our analyses showed that the Taylor series alone is not sufficient to resolve the stability issue, especially away from the reference point of the expansion. Consequently, a new approach is proposed based on the partition of unity (PU) of RBF with respect to the shape parameter. The proposed approach is benchmarked. The method ensures that RBF has a weak dependency on the shape parameter, thereby providing a consistent accuracy for interpolation and derivative approximation. Several benchmarks are performed to assess the accuracy of the proposed approach. The novelty of the present approach is in providing a means to achieve a reasonable accuracy for RBF interpolation without the need to pinpoint a specific value for the shape parameter, which is the case for the original RBF interpolation.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3