Design of a New Stress Wave-Based Pulse Position Modulation (PPM) Communication System with Piezoceramic Transducers

Author:

Wu Aiping,He Sihong,Ren Yali,Wang Ning,Ho Siu,Song GangbingORCID

Abstract

Stress wave-based communication has great potential for succeeding in subsea environments where many conventional methods would otherwise face excessive difficulty, and it can benefit logging well by using the drill string as a conduit for stress wave propagation. To achieve stress wave communication, a new stress wave-based pulse position modulation (PPM) communication system is designed and implemented to transmit data through pipeline structures with the help of piezoceramic transducers. This system consists of both hardware and software components. The hardware is composed of a piezoceramic transducer that can generate powerful stress waves travelling along a pipeline, upon touching, and a PPM signal generator that drives the piezoceramic transducer. Once the transducer is in contact with a pipeline surface, the generator integrated with an amplifier is utilized to excite the piezoceramic transducer with a voltage signal that is modulated to encode the information. The resulting vibrations of the transducer generates stress waves that propagate throughout the pipeline. Meanwhile, piezoceramic sensors mounted on the pipeline convert the stress waves to electric signals and the signal can be demodulated. In order to enable the encoding and decoding of information in the stress wave, a PPM-based communication protocol was integrated into the software system. A verification experiment demonstrates the functionality of the developed system for stress wave communication using piezoceramic transducers and the result shows that the data transmission speed of this new communication system can reach 67 bits per second (bps).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3