Enhanced Hyper-Cube Framework Ant Colony Optimization for Combinatorial Optimization Problems

Author:

Ahmid Ali,Dao Thien-My,Le Ngan Van

Abstract

Solving of combinatorial optimization problems is a common practice in real-life engineering applications. Trusses, cranes, and composite laminated structures are some good examples that fall under this category of optimization problems. Those examples have a common feature of discrete design domain that turn them into a set of NP-hard optimization problems. Determining the right optimization algorithm for such problems is a precious point that tends to impact the overall cost of the design process. Furthermore, reinforcing the performance of a prospective optimization algorithm reduces the design cost. In the current study, a comprehensive assessment criterion has been developed to assess the performance of meta-heuristic (MH) solutions in the domain of structural design. Thereafter, the proposed criterion was employed to compare five different variants of Ant Colony Optimization (ACO). It was done by using a well-known structural optimization problem of laminate Stacking Sequence Design (SSD). The initial results of the comparison study reveal that the Hyper-Cube Framework (HCF) ACO variant outperforms the others. Consequently, an investigation of further improvement led to introducing an enhanced version of HCFACO (or EHCFACO). Eventually, the performance assessment of the EHCFACO variant showed that the average practical reliability became more than twice that of the standard ACO, and the normalized price decreased more to hold at 28.92 instead of 51.17.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Determining the Number of Ants in Ant Colony Optimization;Journal of Biomedical and Sustainable Healthcare Applications;2023-01-05

2. Soft Computing Techniques to Analyze the Load Balancing in Cloud Environment;Journal of Computing and Natural Science;2023-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3