Research on Thermal Adaptability of Flexible Operation in Different Types of Coal-Fired Power Units

Author:

Wei Haijiao1,Lu Yuanwei2,Yang Yanchun3,Wu Yuting2,Zheng Kaifeng1,Li Liang4

Affiliation:

1. China North Vehicle Research Institute, Beijing 100072, China

2. Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Faculty of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China

3. School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

4. Inner Mongolia Daihai Power Generation Co., Ltd., Liangcheng County, Ulanqab 013750, China

Abstract

The flexible mode of operation of coal-fired units can accommodate large-scale renewable power integration into the grid, providing more grid capacity. The flexibility transformation of coal-fired units in thermal power plants can be achieved through main steam extraction and reheated steam extraction. A 300 MW subcritical unit, 600 MW subcritical unit and 660 MW ultra-supercritical unit with six flexible operation modes were chosen as the research model to investigate the thermal adaptability for flexible operation. The results show that from the perspective of the source of steam extraction, the main steam extraction scheme is suitable for the flexible adjustment of peak load capacity, and the reheated extraction scheme is suitable for the flexible operation of low load and high thermal efficiency. Moreover, from the perspective of thermal performance adaptability, the 600 MW unit has a wider load regulation capacity than the 300 MW and 660 MW units, and is suitable as the peak shaving unit. This work can provide theoretical guidance for different types of coal-fired units in choosing flexible operation schemes.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3