A Cascading Failure Model of the Air Traffic Control Network Based on the Theory of Interdependent Networks

Author:

Bai Jie1ORCID,Wang Buhong1,Zeng Leya1,Yang Yong1

Affiliation:

1. School of Information and Navigation, Air Force Engineering University, Xi’an 710077, China

Abstract

With the continuous development of information technology, a spontaneous interdependent network has formed within the air traffic control network. Due to the internal interdependence, any small, failed node may trigger a cascade failure of the entire system. The purpose of this study is to investigate the resilience of air traffic control networks. Based on air traffic management regulations, a new cascading failure model for air traffic control networks is proposed, which is based on the theory of interdependent networks. The model establishes a dual-layer dependency relationship between the control coordination network and the air route facility network, including control dependency and service dependency. Through experiments, targeted measures are proposed to improve the safety and reliability of air traffic control. This model introduces parameters such as control cost and node control capability, and reflects the resilience of the air traffic control network, based on the final number of failed nodes after the steady-state of the cascade failure, the network’s cascade failure rate, and the system’s load failure threshold. Simulation results show that enhancing the control capability and increasing the number of control positions can improve the control cost of the air traffic control network. The higher the control cost, the better the resilience of the air traffic control network. Improving the control capability of control nodes has a greater impact on the resilience of the air traffic control network, compared to increasing the number of control nodes. The degree attack on route nodes has a greater impact on the cascade failure of the air traffic control network, compared to random attacks and facility node degree attacks. The cascade failure model proposed in this paper provides a new method for guiding the air traffic control network to resist cascade failure attacks and enhance its resilience.

Funder

Zhen Wang

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

1. Civil Aviation Administration of China (2021). Civil Aviation Industry Development Statistical Bulletin, Civil Aviation Administration of China.

2. Aviation security automation: The current level of security automation and its impact;Milbredt;J. Airpt. Manag.,2022

3. Robust analysis of cascading failures in complex networks;Wu;Phys. A Stat. Mech. Appl.,2021

4. Multiple phase transition in the non-symmetrical interdependent networks;Gao;Phys. A Stat. Mech. Appl.,2020

5. Energy-supported cascading failure model on interdependent networks considering control nodes;Tian;Phys. A Stat. Mech. Appl.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3