Improved CNN Classification Method for Groups of Buildings Damaged by Earthquake, Based on High Resolution Remote Sensing Images

Author:

Ma Haojie,Liu Yalan,Ren Yuhuan,Wang Dacheng,Yu Linjun,Yu Jingxian

Abstract

Effective extraction of disaster information of buildings from remote sensing images is of great importance to supporting disaster relief and casualty reduction. In high-resolution remote sensing images, object-oriented methods present problems such as unsatisfactory image segmentation and difficult feature selection, which makes it difficult to quickly assess the damage sustained by groups of buildings. In this context, this paper proposed an improved Convolution Neural Network (CNN) Inception V3 architecture combining remote sensing images and block vector data to evaluate the damage degree of groups of buildings in post-earthquake remote sensing images. By using CNN, the best features can be automatically selected, solving the problem of difficult feature selection. Moreover, block boundaries can form a meaningful boundary for groups of buildings, which can effectively replace image segmentation and avoid its fragmentary and unsatisfactory results. By adding Separate and Combination layers, our method improves the Inception V3 network for easier processing of large remote sensing images. The method was tested by the classification of damaged groups of buildings in 0.5 m-resolution aerial imagery after the earthquake of Yushu. The test accuracy was 90.07% with a Kappa Coefficient of 0.81, and, compared with the traditional multi-feature machine learning classifier constructed by artificial feature extraction, this represented an improvement of 18% in accuracy. Our results showed that this improved method could effectively extract the damage degree of groups of buildings in each block in post-earthquake remote sensing images.

Funder

National Key Research and Development Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3