Review of the Estimation Methods of Energy Consumption for Battery Electric Buses

Author:

Al-Ogaili Ali Saadon,Al-Shetwi Ali Q.ORCID,Al-Masri Hussein M. K.ORCID,Babu Thanikanti SudhakarORCID,Hoon Yap,Alzaareer Khaled,Babu N. V. Phanendra

Abstract

In the transportation sector, electric battery bus (EBB) deployment is considered to be a potential solution to reduce global warming because no greenhouse gas (GHG) emissions are directly produced by EBBs. In addition to the required charging infrastructure, estimating the energy consumption of buses has become a crucial precondition for the deployment and planning of electric bus fleets. Policy and decision-makers may not have the specific tools needed to estimate the energy consumption of a particular bus network. Therefore, many state-of-the-art studies have proposed models to determine the energy demand of electric buses. However, these studies have not critically reviewed, classified and discussed the challenges of the approaches that are applied to estimate EBBs’ energy demands. Thus, this manuscript provides a detailed review of the forecasting models used to estimate the energy consumption of EBBs. Furthermore, this work fills the gap by classifying the models for estimating EBBs’ energy consumption into small-town depot and big-city depot networks. In brief, this review explains and discusses the models and formulations of networks associated with well-to-wheel (WTW) assessment, which can determine the total energy demand of a bus network. This work also reviews a survey of the most recent optimization methods that could be applied to achieve the optimal pattern parameters of EBB fleet systems, such as the bus battery capacity, charger rated power and the total number of installed chargers in the charging station. This paper highlights the issues and challenges, such as the impact of external factors, replicating real-world data, big data analytics, validity index, and bus routes’ topography, with recommendations on each issue. Also, the paper proposes a generic framework based on optimization algorithms, namely, artificial neural network (ANN) and particle swarm optimization (PSO), which will be significant for future development in implementing new energy consumption estimation approaches. Finally, the main findings of this manuscript further our understanding of the determinants that contribute to managing the energy demand of EBBs networks.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3