Causality Mining in Natural Languages Using Machine and Deep Learning Techniques: A Survey

Author:

Ali Wajid,Zuo Wanli,Ali Rahman,Zuo Xianglin,Rahman Gohar

Abstract

The era of big textual corpora and machine learning technologies have paved the way for researchers in numerous data mining fields. Among them, causality mining (CM) from textual data has become a significant area of concern and has more attention from researchers. Causality (cause-effect relations) serves as an essential category of relationships, which plays a significant role in question answering, future events predication, discourse comprehension, decision making, future scenario generation, medical text mining, behavior prediction, and textual prediction entailment. While, decades of development techniques for CM are still prone to performance enhancement, especially for ambiguous and implicitly expressed causalities. The ineffectiveness of the early attempts is mainly due to small, ambiguous, heterogeneous, and domain-specific datasets constructed by manually linguistic and syntactic rules. Many researchers have deployed shallow machine learning (ML) and deep learning (DL) techniques to deal with such datasets, and they achieved satisfactory performance. In this survey, an effort has been made to address a comprehensive review of some state-of-the-art shallow ML and DL approaches in CM. We present a detailed taxonomy of CM and discuss popular ML and DL approaches with their comparative weaknesses and strengths, applications, popular datasets, and frameworks. Lastly, the future research challenges are discussed with illustrations of how to transform them into productive future research directions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference193 articles.

1. Extracting causation knowledge from natural language texts

2. The Many Facets of the Cause-Effect Relation;Khoo,2002

3. A Modern Dictionary of Sociology;Theodorson,1969

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LERCause: Deep learning approaches for causal sentence identification from nuclear safety reports;PLOS ONE;2024-08-22

2. A Framework to Construct Financial Causality Knowledge Graph from Text;2024 IEEE 18th International Conference on Semantic Computing (ICSC);2024-02-05

3. Generative AI and Causality;Causality for Artificial Intelligence;2024

4. Exploring Causal Chain Identification: Comprehensive Insights from Text and Knowledge Graphs;Lecture Notes in Computer Science;2024

5. Causality extraction: A comprehensive survey and new perspective;Journal of King Saud University - Computer and Information Sciences;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3