Abstract
In this paper, the laser-accelerated plasma–propulsion system (LAPPS) for a spacecraft is revisited. Starting from the general properties of relativistic propellants, the relations between specific impulse, engine thrust and rocket dynamics have been obtained. The specific impulse is defined in terms of the relativistic velocity of the propellant using the Walter’s parameterization, which is a suitable and general formalism for closed–cycle engines. Finally, the laser-driven acceleration of light ions via Target Normal Sheath Acceleration (TNSA) is discussed as a thruster. We find that LAPPS is capable of an impressive specific impulse Isp in the 105 s range for a laser intensity I0≃1021W/cm2. The limit of Isp≲104 s, which characterizes most of the other plasma-based space electric propulsion systems, can be obtained with a relatively low laser intensity of I0≳1019W/cm2. Finally, at fixed laser energy, the engine thrust can be larger by a factor 102 with respect to previous estimates, making the LAPPS potentially capable of thrust-power ratios in the N/MW range.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. 激光等离子体爆轰波血栓推进机理的数值模拟研究;Chinese Journal of Lasers;2024