An Optimized System to Reduce Procurement Risks and Stock-Outs: A Simulation Case Study for a Component Manufacturer

Author:

Gallego-García Diego,Gallego-García SergioORCID,García-García Manuel

Abstract

In the current global system; supply chains are at risk due to increasing procurement shortages, supply disruptions, and the reliability of on-time deliveries with the original order quantities. As a result, an anticipated management model is of vital importance to provide companies with the productive flexibility necessary to adapt quickly to supply changes, in order to ensure the quality and delivery time through efficient management of stocks and supply costs. In this context, this research aims to develop a system to complement classical procurement planning based on inventory management methods and MRP (material requirements planning) systems by considering suppliers’ behavior regarding procurement risks. For this purpose, a system is developed that seeks to simulate the impacts of procurement shortages of different natures. Moreover, the research investigates the development of a system that performs procurement planning of a component manufacturer to determine the supply orders necessary to meet the master production schedule. The system is analyzed based on a set of indicators in the event that the supplier of a material needed for production does not supply on time or has short-term problems. Several scenarios are simulated, and the results are quantified by changing the procurement order quantities, which may or may not follow the economic order quantity (EOQ) model, and the potential procurement disruptions or shortages. The results show how the simulation and anticipation of potential suppliers’ procurement behavior concerning potential shortages and their probability are key for successful procurement within a joint strategy with classical procurement methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3