Abstract
This study investigates heat and mass transfer under natural convection flow along a vertical permeable surface with variable wall heat fluxes through a porous medium. The non-Darcian model is employed for the medium. The effects of suction/blowing, inertia, buoyancy ratio, exponent of heat flux, position parameter, Schmidt number, and thermophoresis are considered. The governing equations of continuity, momentum, energy, and concentration are solved by adopting similarity transformation and Runge–Kutta integration with a shooting technique. Results of interest, such as velocity, temperature, and concentration profiles related to local Nusselt and Sherwood numbers, are obtained for the selected buoyancy ratio at different magnitudes of the thermophoretic effect. The numerical solutions help us to realize the gas diffusion phenomena and control the transport technology.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献