Freezing and Thawing Resistance of Fine Recycled Concrete Aggregate (FRCA) Mixtures Designed with Distinct Techniques

Author:

Trottier CassandraORCID,de Grazia Mayra T.ORCID,Macedo Hian F.,Sanchez Leandro F. M.ORCID,Andrade Gabriella P. de,de Souza Diego J.ORCID,Naboka OlgaORCID,Fathifazl Gholamreza,Nkinamubanzi Pierre-Claver,Demers André

Abstract

The pressure to use sustainable materials and adopt practices reducing the carbon footprint of the construction industry has risen. Such materials include recycled concrete aggregates (RCA) made from waste concrete. However, concrete made with RCA often presents poor fresh and hardened properties along with a decrease in its durability performance, especially when using its fine fraction (i.e., FRCA). Most studies involving FRCA use direct replacement methods (DRM) to proportion concrete although other techniques are available such as the Equivalent Volume (EV) and Particle Packing Models (PPMs); yet their impact on the durability performance, especially its performance against freezing and thawing (F/T), remains unknown. This work, therefore, appraises the F/T resistance of FRCA mixtures proportioned through various mix proportioning techniques (i.e., DRM, EV and PPMs), produced with distinct crushing processes (i.e., crusher’s fines vs. finely ground). The results show that the mix design technique has a significant influence on the FRCA mixture’s F/T resistance where PPM-proportioned mixtures demonstrate the best overall performance, exceeding the specified requirements while DRM-proportioned mixtures failed F/T resistance requirements. Moreover, the crushing process plays an important role in the recycled mixtures’ cracking behavior under F/T cycles, where less processing leads to fewer cracks while remaining the most sustainable option overall.

Publisher

MDPI AG

Subject

General Materials Science

Reference87 articles.

1. Summary Report 2021: Canada’s Net-Zero Future

2. Cement Industry Energy and CO2 Performance: Getting the Numbers Right (GNR),2016

3. Concrete Materials and Methods of Concrete Construction/Test Methods and Standard Practices for Concrete. CSA A23.1:19/CSA A23.2:19,2019

4. Removal and Reuse of Hardened Concrete (ACI 555R);Lamond,2001

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3