Preparation and Characterization of Glass-Ceramic Foam from Clay-Rich Waste Diatomaceous Earth

Author:

Sedlačík MartinORCID,Nguyen MartinORCID,Opravil Tomáš,Sokolář RadomírORCID

Abstract

In this study, the potential use of waste diatomaceous earth from the production of diatomaceous earth for filtration purposes, as an alternative raw material for foam glass production, was explored. The chemical and mineralogical composition and the high temperature behavior of waste diatomite were studied to assess its suitability for foam glass production. Glass-ceramic foams were prepared using NaOH solution as a foaming agent, via a hydrate mechanism. The influence of different pretreatments and firing temperatures on the foam’s structure, bulk density and compressive strength was investigated. High temperature behavior was studied using TG/DTA analysis and high temperature microscopy. Phase composition was studied using X-ray diffraction analysis. Glass-ceramic foam samples of a high porosity comparable to conventional foam glass products were fabricated. The pretreatment temperature, foaming temperature and sintering holding time were found to have a significant influence on foam properties. With increased pretreatment temperature, pyrogenic carbon from the thermal decomposition of organic matter contained in the raw material acted as an additional foaming agent and remained partially unoxidized in prepared foams. The bulk densities of prepared samples ranged from 150 kg/m3 to 510 kg/m3 and their compressive strengths were between 140 and 1270 kPa.

Funder

Brno University of Technology

Publisher

MDPI AG

Subject

General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3