Numerical Estimation of Gas Release and Dispersion from a Submarine Pipeline

Author:

Yang Mingjun1,Jiang Rui1,Wu Xinyuan1,Hu Zhongzhi1

Affiliation:

1. School of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643099, China

Abstract

Submarine pipeline gas releases and dispersions can cause safety concerns such as fire and explosion, which can cause serious casualties and property losses. There are many existing studies on the impacts of the horizontal diffusion distances of natural gas leakages from subsea pipelines, but there is a lack of research on the impact of influencing factors on vertical diffusion distances. Therefore, a diffusion model of natural gas leakage from a submarine pipeline is established by using the computational fluid dynamics method (CFD). The influence law and degrees of factors such as water depth at the leakage point, leak orifice size, leak pressure and the ocean current’s velocity on the leakages and vertical diffusion distances of natural gases from submarine pipelines are systematically investigated. The results show that the leaked natural gas jet enters the sea water to form an air mass, which rises continuously under the action of the pressure in the pipe and the buoyancy of the sea water. The gas mass breaks into smaller bubbles affected by the interaction between the gas–liquid two phases and continues to float up and diffuse to the overflow surface. It is also found that the ocean current’s velocity will affect the offset of leakage gas along the current direction; the depth of the leakage water, the pressure in the pipe and the leakage aperture will affect the time when the gas reaches the sea surface and the release area after a submarine pipeline’s leakage. The research results would help to support risk assessments and response planning of potential subsea gas release accidents.

Funder

Science and Technology Department of Sichuan Provincial

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference40 articles.

1. (2018, May 01). Offshore Energy Outlook 2018, International Energy Agency. Available online: https://www.iea.org/reports/offshore-energy-outlook-2018.2018.

2. Risk assessment of offshore fire accidents caused by subsea gas release;Li;Appl. Ocean Res.,2021

3. A weakest t-norm based fuzzy fault tree approach for leakage risk assessment of submarine pipeline;Yu;J. Loss Prev. Process Ind.,2019

4. Statistical analysis of leakage accidents of submarine pipeline;Fang;Oil Gas Storage Transp.,2014

5. Current understanding of subsea gas release: A review;Olsen;Can. J. Chem. Eng.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on gas diffusion and explosion characteristics in a ship engine room;International Journal of Hydrogen Energy;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3