Short Review of Self-Powered Nitrogen Removal via Abiotic Electrochemical Catalysis

Author:

Yu Binbin12,Xu Wei3,Jin Yanxian2

Affiliation:

1. School of Environment, Nanjing University, Nanjing 210008, China

2. School of Pharmaceutical, Taizhou University, Taizhou 318000, China

3. Zhejiang Tianxiang Environmental Service Co., Ltd., Hangzhou 310000, China

Abstract

Microbial nitrification and denitrification are efficient technologies for the treatment of nitrogen-containing wastewater. However, these biotic technologies are inapplicable for the treatment of toxic substances such as heavy metals, polyaromatic hydrocarbons, adsorbable organic halogens, and polychlorinated biphenyls, which have an inhibitory effect on microbial metabolism. It is therefore necessary to develop abiotic nitrogen removal technology with comparable cost efficiency. Nitrogen contaminants are promising indirect fuel sources. The integration of electrocatalysis energy conversion with nitrogen contaminants could drive an entire electrochemical system to obtain nitrogen removal in a self-powered fashion. Research advances in the development of fuel cells have corroborated their promising application for nitrogen removal. This work aims to review the most recent advances in the utilization of ammonia and nitrate as fuels for self-powered nitrogen removal and demonstrate how close this technology is to integration with future applications. The mechanism of ammonia–oxygen fuel cells is first summarized, followed by an overview of recent research on self-powered systems based on various noble-metal-free catalysts. We then introduce different harvesting and conversion methods using nitrate with a desired power output and nitrogen removal efficiency. The final section demonstrates the shortcomings of research and future innovative perspectives for self-powered wastewater treatment.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Key Research and Development Plan of Zhejiang Province

National Innovation Training program for college students

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3