Nitrogen Fertilizer Effects on Pea–Barley Intercrop Productivity Compared to Sole Crops in Denmark

Author:

Cowden Reed John,Shah Ambreen Naz,Lehmann Lisa MølgaardORCID,Kiær Lars PødenphantORCID,Henriksen Christian BuggeORCID,Ghaley Bhim Bahadur

Abstract

Cereal–legume intercropping increases the nitrogen (N) input from biological nitrogen fixation (BNF) and improves the exploitation of fertilizer and soil N, often leading to higher grain N content and higher productivity per unit land area compared to monocrops. Previous studies have found that these effects are more tangible under low soil and fertilizer N conditions compared to high N availability, and there is a need to assess the N uptake at critical crop development stages in order to time the N application for maximum uptake and use efficiency. The objective of this study was to assess the productivity of pea–barley intercropping compared to monocropping under 0 kg N ha−1 (0 N) and 100 kg N ha−1 (100 N). In 2017, a split plot experimental design was implemented with pea (Pisum sativum) sole crop (SC pea), barley (Hordeum vulgare) sole crop (SC barley), and pea–barley intercrop (IC total) as the main plots and 100 N applications in two 50 kg N ha−1 splits at 30 and 60 days after emergence as subplots within the main plots. The Land Equivalent Ratio (LER), based on grain dry matter (GDM) yields in the pea–barley intercrop (IC total), was higher (1.14 at 0 N and 1.10 at 100 N), indicating 10–14% greater radiation, nutrient, and water use efficiency compared to the sole crops and 4% greater resource use efficiency at 0 N compared to the 100 N; this illustrated greater total intercrop productivity compared to sole crops. The 100 N treatment decreased the SC pea and pea in intercrop (IC pea) GDM and grain dry matter N (GDMN) and increased the GDM and GDMN in SC barley and barley in the intercrop (IC barley). Intercropping increased the grain N content and therefore the protein content of the grains in 0 N and 100 N treatments. The highest fertilizer N yield, % nitrogen derived from fertilizer (%NDFF), and % nitrogen use efficiency (%NUE) were achieved in SC barley followed by IC total, indicating that intercropping improved the soil and fertilizer N use compared to SC pea. The IC pea increased the % nitrogen derived from atmosphere (%NDFA) from 67.9% in SC pea to 70.1% in IC pea. IC total increased the share of %NDFF, %NDFS, and %NDFA compared to the SC pea, which indicated a significant advantage of intercropping due to the complementarity of the component species under limited N supply in the field.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3