Determination of High Temperature Corrosion Rates of Steam Boiler Evaporators Using Continuous Measurements of Flue Gas Composition and Neural Networks

Author:

Hardy TomaszORCID,Kakietek Sławomir,Halawa KrzysztofORCID,Mościcki Krzysztof,Janda Tomasz

Abstract

The use of low-emission combustion techniques in pulverized coal-fired (PC) boilers are usually associated with the formation of a reduced-gas atmosphere near evaporator walls. This increases the risk of high temperature (low oxygen) corrosion processes in coal-fired boilers. The identification of the dynamics and the locations of these processes, and minimizing negative consequences are essential for power plant operation. This paper presents the diagnostic system for determining corrosion risks, based on continuous measurements of flue gas composition in the boundary layer of the combustion chamber, and artificial intelligence techniques. Experience from the implementation of these measurements on the OP-230 hard coal-fired boiler, to identify the corrosion hazard of one of the evaporator walls, has been thoroughly described. The results obtained indicate that the continuous controlling of the concentrations of O2 and CO near the water wall, in combination with the use of neural networks, allows for the forecasting of the corrosion rate of the evaporator. The correlation between flue gas composition and corrosion rate has been demonstrated. At the same time, the analysis of the possibilities of significantly simplifying the measurement system by using neural networks was carried out.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3