Abstract
Vehicular Ad hoc Networks (VANETs) are an emerging type of network that increasingly encompass a larger number of vehicles. They are the basic support for Intelligent Transportation Systems (ITS) and for establishing frameworks which enable communication among road entities and foster the development of new applications and services aimed at enhancing driving experience and increasing road safety. However, VANETs’ demanding characteristics make it difficult to implement security mechanisms, creating vulnerabilities easily explored by attackers. The main goal of this work is to propose an Intelligent Hierarchical Security Framework for VANET making use of Machine Learning (ML) algorithms to enhance attack detection, and to define methods for secure communications among entities, assuring strong authentication, privacy, and anonymity. The ML algorithms used in this framework have been trained and tested using vehicle communications datasets, which have been made publicly available, thus providing easily reproducible and verifiable results. The obtained results show that the proposed Intrusion Detection System (IDS) framework is able to detect attacks accurately, with a low False Positive Rate (FPR). Furthermore, results show that the framework can benefit from using different types of algorithms at different hierarchical levels, selecting light and fast processing algorithms in the lower levels, at the cost of accuracy, and using more precise, accurate, and complex algorithms in nodes higher in the hierarchy.
Funder
Fundação para a Ciência e Tecnologia
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献