Automatic Clustering of Students by Level of Situational Interest Based on Their EEG Features

Author:

Othman Ernee SazlinayatiORCID,Faye IbrahimaORCID,Hussaan Aarij Mahmood

Abstract

The usage of physiological measures in detecting student’s interest is often said to improve the weakness of psychological measures by decreasing the susceptibility of subjective bias. The existing methods, especially EEG-based, use classification, which needs a predefined class and complex computational to analyze. However, the predefined classes are mostly based on subjective measurement (e.g., questionnaires). This work proposed a new scheme to automatically cluster the students by the level of situational interest (SI) during learning-based lessons on their electroencephalography (EEG) features. The formed clusters are then used as ground truth for classification purposes. A simultaneous recording of EEG was performed on 30 students while attending a lecture in a real classroom. The frontal mean delta and alpha power as well as the frontal alpha asymmetry metric served as the input for k-means and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithms. Using the collected data, 29 models were trained within nine domain classifiers, then the classifiers with the highest performance were selected. We validated all the models through 10-fold cross-validation. The high SI group was clustered to students having lower frontal mean delta and alpha power together with negative Frontal Alpha Asymmetry (FAA). It was found that k-means performed better by giving the maximum performance assessment parameters of 100% in clustering the students into three groups: high SI, medium SI and low SI. The findings show that the DBSCAN had reduced the performance to cluster dataset without the outlier. The findings of this study give a promising option to cluster the students by their SI level, as well as address the drawbacks of the existing methods, which use subjective measures.

Funder

Ministry of Higher Education

Universiti Teknologi PETRONAS and IQRA University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3