The Effect of Acceleration on the Separation Force in Constrained-Surface Stereolithography

Author:

Gritsenko DmitryORCID,Paoli RobertoORCID,Xu JieORCID

Abstract

Constrained-surface-based stereolithography has recently attracted much attention from both academic and industrial communities. Despite numerous experimental, numerical and theoretical efforts, the fundamental need to reduce the separation force between the newly cured part and constrained surface has not yet been completely solved. In this paper, we develop a fluid dynamics approach, proposed in our previous work, to theoretically model the separation force in 3D printing of a cylindrical part for flat and patterned windows. We demonstrate the possibility of separation force reduction with an accelerated movement of the printing platform. In particular, we investigate behaviors of transient parameter, its reduction rate, and separation force reduction with respect to elevation speed and time. The proposed approach involves deceleration and acceleration stages and allows to achieve the force reduction for the entire printing process. Finally, we provide implicit analytical solutions for time moments when switching between the stages can be done without noticeable increase of separation force and explicit expression for separation force in case of patterned window.

Funder

National Science Foundation

Argonne National Laboratory

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

1. Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography;Jacobs,1992

2. Stereolithographic processes;Bártolo,2011

3. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing;Gibson,2014

4. A Fast Mask Projection Stereolithography Process for Fabricating Digital Models in Minutes

5. Meniscus process optimization for smooth surface fabrication in Stereolithography

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3