An Enhanced Message Distribution Mechanism for Northbound Interfaces in the SDN Environment

Author:

Wang ChenhuiORCID,Ni Hong,Liu Lei

Abstract

Software-Defined Network (SDN), which is recommended as a new generation of the network, a substitute for TCP/IP network, has the characteristics of separation of data plane and control plane. Although the separation of the control plane brings a high degree of freedom and simple operation and maintenance, it also increases the cost of north–south communication. There are many additional modules for SDN to modify and enhance the basic functions of SDN. This paper proposes a message queue-based northbound communication mechanism, which pre-categorizes messages from the data plane and accurately pushes them to the apps potentially interested. This mechanism improves the efficiency of northbound communication and apps’ execution. Furthermore, it supports both OpenFlow and the protocol-independent southbound interface, and it has strong compatibility. Experiments have proved that this mechanism can reduce the control-response latency by up to 41% when compared with the normal controller northbound communication system, and it also improves the network situation of the data plane, such as real-time bandwidth.

Funder

Strategic Leadership Project of Chinese Academy of Sciences: SEANET Technology Standardization Research System Development

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Southbound Message Delivery With Virtual Network Topology Awareness in Clouds;IEEE/ACM Transactions on Networking;2023-02

2. A State-of-the-Art Survey and Taxonomy for Load Balancing Metrics in SDN Networks;2022 2nd International Conference on Advances in Engineering Science and Technology (AEST);2022-10-24

3. VITA: Virtual Network Topology-aware Southbound Message Delivery in Clouds;IEEE INFOCOM 2022 - IEEE Conference on Computer Communications;2022-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3