Abstract
With the growth of deep learning in various classification problems, many researchers have used deep learning methods in environmental sound classification tasks. This paper introduces an end-to-end method for environmental sound classification based on a one-dimensional convolution neural network with Bayesian optimization and ensemble learning, which directly learns features representation from the audio signal. Several convolutional layers were used to capture the signal and learn various filters relevant to the classification problem. Our proposed method can deal with any audio signal length, as a sliding window divides the signal into overlapped frames. Bayesian optimization accomplished hyperparameter selection and model evaluation with cross-validation. Multiple models with different settings have been developed based on Bayesian optimization to ensure network convergence in both convex and non-convex optimization. An UrbanSound8K dataset was evaluated for the performance of the proposed end-to-end model. The experimental results achieved a classification accuracy of 94.46%, which is 5% higher than existing end-to-end approaches with fewer trainable parameters. Four measurement indices, namely: sensitivity, specificity, accuracy, precision, recall, F-measure, area under ROC curve, and the area under the precision-recall curve were used to measure the model performance. The proposed approach outperformed state-of-the-art end-to-end approaches that use hand-crafted features as input in selected measurement indices and time complexity.
Funder
Universiti Teknologi PETRONAS
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献