Abstract
In this work, we investigate resource allocation and user pairing to improve the system’s Throughput for the downlink non-orthogonal multiple access (NOMA)-based 5G networks. The proposed resource allocation involves user pairing, subchannel power allocation, and proportional power allocation among the multiplexed users. The resource allocation is a non-deterministic polynomial (NP-hard) problem that is difficult to tackle throughput maximization. The user pairing and power allocation are coupled to address the substantial requirements of the NOMA system. The NOMA system requires an efficient deployment of resource allocation techniques to enhance the system’s throughput performance. In this work, we propose simulated annealing (SA) to optimize the power allocation and perform user pairing to maximize the throughput for the NOMA system. Also, we provide mathematical proof on the near-optimal solution for subchannel power and mathematical analysis on the optimal value of the power ratio for the multiplexed users in the NOMA system. The SA provides a significant throughput performance that increases by 7% compared to the existing numerical optimization methods. Results obtained show that SA performs with sufficient reliability and low time complexity in terms of Throughput improvement.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献