Sprinkler Irrigation on Sloping Land: Distribution Characteristics of Droplet Impact Angle and Shear Stress

Author:

Hui Xin12,Chen Yifei1,Shoukat Muhammad Rizwan2ORCID,Yang Huimin1,Zheng Yudong2

Affiliation:

1. Institute of Mechanized Agriculture, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China

2. College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China

Abstract

Droplet impact angle and shear stress are important indicators of surface runoff under sprinkler irrigation, and determining the distribution characteristics of these two indicators on sloping land is of great significance for preventing soil surface erosion. Therefore, three slopes (0, 10%, and 20%) and two directions (uphill and downhill) under a Rainbird LF1200 rotary sprinkler were considered in this study. The distribution of droplet impact angles and shear stresses along the radial direction were investigated under various working conditions. The correlations among the droplet impact angle, shear stress, and distance from the sprinkler were also analyzed. These results indicated that the closer to the sprinkler, the larger the droplet impact angle and the smaller the shear stress, and the two indicators gradually decreased and increased with the increase of distance from the sprinkler, respectively. Accordingly, there was a very high potential for soil surface runoff at the spray jet end. It was also observed that the uphill direction generally had a greater impact angle and less shear stress than flat land, while the downhill direction had exactly the opposite result. However, regardless of the direction, an increase in the slope could intensify its effect on the droplet shear stress and impact angle. Therefore, there is an urgent need to focus on the occurrence of surface runoff in soils with larger slopes. In addition, two radial droplet shear stress distribution models were developed, and it was verified that Model 2 had higher accuracy (MAE = 176.6 N m−2, MBE = 32.8 N m−2, and NRMSE = 14.4%) and could be used to predict the average droplet shear stresses at different slopes, directions, and distances from the sprinkler. This study contributes to the soil erosion prevention and the sprinkler irrigation system optimization on sloping land.

Funder

Academy of Agricultural Sciences Youth Science and Technology Backbone Innovation Ability Training Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3