Edge-Computing-Based People-Counting System for Elevators Using MobileNet–Single-Stage Object Detection

Author:

Shen Tsu-Chuan1,Chu Edward T.-H.1ORCID

Affiliation:

1. Computer Science and Information Engineering, National Yunlin University of Science and Technology, Yunlin 640301, Taiwan

Abstract

Existing elevator systems lack the ability to display the number of people waiting on each floor and inside the elevator. This causes an inconvenience as users cannot tell if they should wait or seek alternatives, leading to unnecessary time wastage. In this work, we adopted edge computing by running the MobileNet–Single-Stage Object Detection (SSD) algorithm on edge devices to recognize the number of people inside an elevator and waiting on each floor. To ensure the accuracy of people counting, we fine-tuned the SSD parameters, such as the recognition frequency and confidence thresholds, and utilized the line of interest (LOI) counting strategy for people counting. In our experiment, we deployed four NVIDIA Jetson Nano boards in a four-floor building as edge devices to count people when they entered specific areas. The counting results, such as the number of people waiting on each floor and inside the elevator, were provided to users through a web app. Our experimental results demonstrate that the proposed method achieved an average accuracy of 85% for people counting. Furthermore, when comparing it to sending all images back to a remote server for people counting, the execution time required for edge computing was shorter, without compromising the accuracy significantly.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SmartRide: Intelligent reservation and scheduling for elevators;Journal of Ambient Intelligence and Smart Environments;2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3