Sociodemographic and Regional Determinants of Dietary Patterns in Russia

Author:

Maksimov SergeyORCID,Karamnova Natalia,Shalnova Svetlana,Drapkina Oksana

Abstract

An empirical assessment of diets using a posteriori analysis allows us to define actual dietary patterns (DPs) in the food consumption structure of a population. This study represents an a posteriori assessment of DPs for the Russian population in general as well as their dependence on socio-demographic and regional parameters. The data were obtained from 21,923 individuals aged 25–64 years old from a Russian multicenter study of “Epidemiology of Cardiovascular Diseases in the Regions of the Russian Federation” conducted in 2013–2014. Cross-sectional study subjects were interviewed face-to-face in order to obtain data on their diet. DPs were defined using principal component analysis. Four DPs were specified as “Rational”, “Salt”, “Meat”, and “Mixed”; all these variants together accounted for 55.9% of variance. Diets in gender and age groups corresponded to those for an all-Russian population; in several regions, the defined diets differed from the all-Russian ones. More favorable diet trends were observed among women, people with no family, people not working, and urban dwellers, and diet trends were more favorable with an increase in age, level of education, and material wealth. Thus, a posteriori DPs were defined for the Russian population, which were stable in sex/age groups and were mediated by the socio-demographic characteristics of the population.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3