Reverse Logistics Network Design for Effective Management of Medical Waste in Epidemic Outbreaks: Insights from the Coronavirus Disease 2019 (COVID-19) Outbreak in Wuhan (China)

Author:

Yu HaoORCID,Sun Xu,Solvang Wei Deng,Zhao Xu

Abstract

The outbreak of an epidemic disease may pose significant treats to human beings and may further lead to a global crisis. In order to control the spread of an epidemic, the effective management of rapidly increased medical waste through establishing a temporary reverse logistics system is of vital importance. However, no research has been conducted with the focus on the design of an epidemic reverse logistics network for dealing with medical waste during epidemic outbreaks, which, if improperly treated, may accelerate disease spread and pose a significant risk for both medical staffs and patients. Therefore, this paper proposes a novel multi-objective multi-period mixed integer program for reverse logistics network design in epidemic outbreaks, which aims at determining the best locations of temporary facilities and the transportation strategies for effective management of the exponentially increased medical waste within a very short period. The application of the model is illustrated with a case study based on the outbreak of the coronavirus disease 2019 (COVID-19) in Wuhan, China. Even though the uncertainty of the future COVID-19 spread tendency is very high at the time of this research, several general policy recommendations can still be obtained based on computational experiments and quantitative analyses. Among other insights, the results suggest installing temporary incinerators may be an effective solution for managing the tremendous increase of medical waste during the COVID-19 outbreak in Wuhan, but the location selection of these temporary incinerators is of significant importance. Due to the limitation on available data and knowledge at present stage, more real-world information are needed to assess the effectiveness of the current solution.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 231 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3