Abstract
Aim: In this study we have investigated the problem of cost effective wireless heart health monitoring from a service design perspective. Subject and Methods: There is a great medical and economic need to support the diagnosis of a wide range of debilitating and indeed fatal non-communicable diseases, like Cardiovascular Disease (CVD), Atrial Fibrillation (AF), diabetes, and sleep disorders. To address this need, we put forward the idea that the combination of Heart Rate (HR) measurements, Internet of Things (IoT), and advanced Artificial Intelligence (AI), forms a Heart Health Monitoring Service Platform (HHMSP). This service platform can be used for multi-disease monitoring, where a distinct service meets the needs of patients having a specific disease. The service functionality is realized by combining common and distinct modules. This forms the technological basis which facilitates a hybrid diagnosis process where machines and practitioners work cooperatively to improve outcomes for patients. Results: Human checks and balances on independent machine decisions maintain safety and reliability of the diagnosis. Cost efficiency comes from efficient signal processing and replacing manual analysis with AI based machine classification. To show the practicality of the proposed service platform, we have implemented an AF monitoring service. Conclusion: Having common modules allows us to harvest the economies of scale. That is an advantage, because the fixed cost for the infrastructure is shared among a large group of customers. Distinct modules define which AI models are used and how the communication with practitioners, caregivers and patients is handled. That makes the proposed HHMSP agile enough to address safety, reliability and functionality needs from healthcare providers.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献