Effects of Lifting Method, Safety Shoe Type, and Lifting Frequency on Maximum Acceptable Weight of Lift, Physiological Responses, and Safety Shoes Discomfort Rating

Author:

Alferdaws Fares F.,Ramadan Mohamed Z.ORCID

Abstract

This study aimed to investigate the physical effects of precision lifting tasks on the maximal acceptable weight of a lift (i.e., psychophysiological lifting capacity where the workers adjust the lifting weight in order to work without any fatigue or strain at the end of the work while wearing common safety shoe types). Additionally, the physical difference between the precise and non-precise lifting conditions associated with wearing safety shoes were assessed by respiration responses and shoe discomfort ratings. To achieve the objective of the study, ten healthy male workers were selected by age (between 25 to 35 years old). Their anthropometric characteristics, including knuckle height, knee height, and body mass index (BMI), were measured. A three-way repeated measures design with three independent variables was used; the variables included—the (1) lifting method (precise and non-precise), (2) lifting frequency (1 and 4 lifts per min), and (3) safety shoe type (light-duty, medium-duty, and heavy-duty). The physiological response variables and one of the subjective factors of this study were—(1) respiration responses, and (2) shoe discomfort rating, respectively. The data were analyzed using the Mauchly’s test of sphericity, Shapiro–Wilk normality test, and analysis of variance (ANOVA). The results showed that the use of heavy-duty safety shoes typically increased the shoe discomfort rating under precise lifting methods. Additionally, the lifting frequency was determined to be one of the main factors affecting respiratory responses and shoe discomfort rating. This study also found that respiration responses rose on four lifts per min as compared to 1 lift per min, regardless of the lifting method type. This study indicated that the replacement of some types of ordinary safety shoes used in some workplaces with those selected appropriately might significantly reduce the rating effort required to lift objects or tools. However, the benefits should be carefully evaluated before replacing the safety shoes.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference67 articles.

1. An ergonomic evaluation of a manual metal pouring operation

2. Manual Material Handling to Prevent Back Injury. Spine-Healthhttps://www.spine-health.com/wellness/ergonomics/manual-material-handling-prevent-back-injury

3. Impact of occupational footwear and workload on lower extremity muscular exertion;Turner;Int. J. Exerc. Sci.,2018

4. Isometric Arm Strength and Subjective Rating of Upper Limb Fatigue in Two-Handed Carrying Tasks

5. Influence of different safety shoes on gait and plantar pressure: a standardized examination of workers in the automotive industry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3