Protocol of the STRess at Work (STRAW) Project: How to Disentangle Day-to-Day Occupational Stress among Academics Based on EMA, Physiological Data, and Smartphone Sensor and Usage Data

Author:

Bolliger LarissaORCID,Lukan Junoš,Luštrek MitjaORCID,De Bacquer Dirk,Clays ElsORCID

Abstract

Several studies have reported on increasing psychosocial stress in academia due to work environment risk factors like job insecurity, work-family conflict, research grant applications, and high workload. The STRAW project adds novel aspects to occupational stress research among academic staff by measuring day-to-day stress in their real-world work environments over 15 working days. Work environment risk factors, stress outcomes, health-related behaviors, and work activities were measured repeatedly via an ecological momentary assessment (EMA), specially developed for this project. These results were combined with continuously tracked physiological stress responses using wearable devices and smartphone sensor and usage data. These data provide information on workplace context using our self-developed Android smartphone app. The data were analyzed using two approaches: 1) multilevel statistical modelling for repeated data to analyze relations between work environment risk factors and stress outcomes on a within- and between-person level, based on EMA results and a baseline screening, and 2) machine-learning focusing on building prediction models to develop and evaluate acute stress detection models, based on physiological data and smartphone sensor and usage data. Linking these data collection and analysis approaches enabled us to disentangle and model sources, outcomes, and contexts of occupational stress in academia.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stress Management Through Workplace Associations with Productivity and Mood: The Impact of Learning Experience Based on Hybrid RF-GA-DNN Approach;2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC);2024-05-02

2. A Systematic Literature Review on Affective Computing Techniques for Workplace Stress Detection;Communications in Computer and Information Science;2024

3. Gauging the stress of long‐term care nursing assistants using ecological momentary assessment, wearable sensors and end of day reconstruction;International Journal of Older People Nursing;2023-12-14

4. Designing an Intervention against Occupational Stress Based on Ubiquitous Stress and Context Detection;Adjunct Proceedings of the 2023 ACM International Joint Conference on Pervasive and Ubiquitous Computing & the 2023 ACM International Symposium on Wearable Computing;2023-10-08

5. How does day‐to‐day stress appraisal relate to coping among office workers in academia? An ecological momentary assessment study;Stress and Health;2023-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3