Author:
Zeng Qiang,Hao Wei,Lee Jaeyoung,Chen Feng
Abstract
This study presents an empirical investigation of the impacts of real-time weather conditions on the freeway crash severity. A Bayesian spatial generalized ordered logit model was developed for modeling the crash severity using the hourly wind speed, air temperature, precipitation, visibility, and humidity, as well as other observed factors. A total of 1424 crash records from Kaiyang Freeway, China in 2014 and 2015 were collected for the investigation. The proposed model can simultaneously accommodate the ordered nature in severity levels and spatial correlation across adjacent crashes. Its strength is demonstrated by the existence of significant spatial correlation and its better model fit and more reasonable estimation results than the counterparts of a generalized ordered logit model. The estimation results show that an increase in the precipitation is associated with decreases in the probabilities of light and severe crashes, and an increase in the probability of medium crashes. Additionally, driver type, vehicle type, vehicle registered province, crash time, crash type, response time of emergency medical service, and horizontal curvature and vertical grade of the crash location, were also found to have significant effects on the crash severity. To alleviate the severity levels of crashes on rainy days, some engineering countermeasures are suggested, in addition to the implemented strategies.
Funder
Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献