3D Path Following Control of an Autonomous Underwater Robotic Vehicle Using Backstepping Approach Based Robust State Feedback Optimal Control Law

Author:

Vadapalli Siddhartha1,Mahapatra Subhasish1ORCID

Affiliation:

1. School of Electronics Engineering, VIT-AP University, Amaravati 522237, AP, India

Abstract

This work renders the design of a robust state feedback optimal control strategy for an Autonomous Underwater Robotic Vehicle (AURV). The control strategy is developed using a polytopic approach based on hydrodynamic parameter variation. Besides, a backstepping approach is designed to control the kinematics of the system. However, the dynamics of the AURV system are controlled by a robust optimal control technique. In this work, the decoupled systems for both horizontal and vertical dynamics of AURV are used for the development of the control algorithms. Furthermore, the 3-D path following is achieved by integrating the control algorithms of both horizontal and vertical dynamics of AURV. The proposed controller is formulated using semi-definite programming (SDP). To track the 3-D path, it is intended to track both the desired depth and desired yaw in diving and steering planes. The simulation studies are conducted through MATLAB/Simulink environment using the YALMIP tool. Furthermore, the robust behavior of the proposed control algorithm is verified by considering the uncertain hydrodynamic parameters.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3