Chromosome-Level Genome Assembly of the Rough-Toothed Dolphin (Steno bredanensis)

Author:

Gao Haiyu12,Kang Hui12,Zhang Yaolei3ORCID,Wang Jiahao3,Lin Wenzhi1ORCID,Zhang Peijun1ORCID,Lin Mingli1,Liu Mingming1ORCID,Fan Guangyi3,Li Songhai1ORCID

Affiliation:

1. Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. BGI (Beijing Genomics Institute)-Qingdao, BGI (Beijing Genomics Institute)-Shenzhen, Qingdao 266555, China

Abstract

The rough-toothed dolphin (Steno bredanensis), the single extant species of the genus Steno, inhabits tropical and subtropical oceans. It is an attractive species for studying aquatic adaptation and evolution. The latest advances in high-throughput sequencing are transforming the study of marine mammals and contributing to understanding various phenomena at the species and population level by determining high-quality genomes. Here, to comprehensively understand the genetic features and explore the molecular basis of aquatic adaption, the chromosome-level genome assembly and comparative genomics analyses of S. bredanensis were performed. The 2.30 Gb final genome assembly of S. bredanensis (scaffold N50 length of 105.53 Mb) was obtained using single-tube long fragment read (stLFR) and Hi-C technologies. The genome assembly clearly revealed the preservation of large chromosomal fragments between S. bredanensis and the melon-headed whale (Peponocephala electra). The S. bredanensis genome contained 19,451 predicted protein-coding genes, of which about 92.33% have functional annotations. The genome assembly and gene sets showed high completeness, with a BUSCO score of 90.6% and 97.3%, respectively. We also identified several positively selected genes specific to S. bredanensis, which may be related to fat cell differentiation, tooth morphogenesis, and immunoregulatory activity. Finally, the demographic dynamics of S. bredanensis were estimated by the pairwise sequentially Markovian coalescent (PSMC) model and found that the population was affected by the climate at the time. We demonstrated that improved continuity and accuracy of the assembled sequence warranted the adoption of this chromosome-level genome as the reference genome and advanced the understanding of genetic features of the rough-toothed dolphin, which will be essential for future evolutionary studies and the protection of this species.

Funder

the Major Scientific and Technological Projects of Hainan Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3