Laboratory Studies of Internal Solitary Waves Propagating and Breaking over Submarine Canyons

Author:

Lin Ying-Tien123ORCID,Liu Ling14,Sheng Biyun5,Yuan Yeping4,Hu Keke6

Affiliation:

1. Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan 316021, China

2. Engineering Research Center of Oceanic Sensing Technology and Equipment, Zhejiang University, Ministry of Education, Zhoushan 316021, China

3. Donghai Laboratory, Zhoushan 316021, China

4. Institute of Physical Ocean and Remote Sensing, Ocean College, Zhejiang University, Zhoushan 316021, China

5. Yuhang District Emergency Management Bureau, Hangzhou 310000, China

6. Zhejiang Institute of Hydraulics & Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou 310020, China

Abstract

This paper carried out laboratory experiments to study evolution of internal solitary waves (ISWs) over submarine canyons with a combination of PIV (particle image velocimetry) and PLIF (planar laser-induced fluorescence) techniques. Taking canyon angle θ and collapse height ∆H as variables, Froude number Fr, head position, energy loss, vorticity field and turbulence intensity when ISWs propagate to the canyon were analyzed. According to the Froude number Fr values, the study cases can be divided into three types: Fr > 1.7 means complete internal hydraulic jump (IHJ); 1 < Fr < 1.7 denotes wavy IHJ and Fr < 1 represents no IHJ. The greater canyon angle, collapse depth and amplitude of the incident wave more easily generate IHJs, which can lead to more energy loss, greater vorticity and turbulence intensity in the canyon area. Among all canyon cases, vorticity and turbulence intensity of the no IHJ case showing an obvious bimodal distribution are smaller than IHJ cases. For wavy IHJ, the energy dissipation is not obvious, and the average turbulent intensity performs a “sharp unimodal distribution”. Complete IHJ cases last for a long time and cause violent mixing, the average turbulent intensity is the largest and its distribution presents a “gentle single peak” pattern. For the 180° conditions (no canyon cases), less energy is delivered to the reflected wave and more energy is dissipated near the terrain, so the energy loss is the largest in comparison to other conditions. These findings will deepen our understanding of the evolution mechanisms of ISWs propagating over submarine canyons.

Funder

National Natural Science Foundation of China

Science and technology plan project of Zhejiang Provincial Department of Water Resources

Science Foundation of Donghai Laboratory

Zhejiang Provincial Natural Science Foundation of China

science foundation of Hainan Observation and Research Station of Ecological Environment and Fishery Resource in Yazhou Bay

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3