Weakly Supervised Forest Fire Segmentation in UAV Imagery Based on Foreground-Aware Pooling and Context-Aware Loss

Author:

Wang Junling12,Wang Yupeng3,Liu Liping2,Yin Hengfu2,Ye Ning1ORCID,Xu Can3

Affiliation:

1. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China

2. State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China

3. College of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

In recent years, tragedies caused by forest fires have been frequently reported. Forest fires not only result in significant economic losses but also cause environmental damage. The utilization of computer vision techniques and unmanned aerial vehicles (UAVs) for forest fire monitoring has become a primary approach to accurately locate and extinguish fires during their early stages. However, traditional computer-based methods for UAV forest fire image segmentation require a large amount of pixel-level labeled data to train the networks, which can be time-consuming and costly to acquire. To address this challenge, we propose a novel weakly supervised approach for semantic segmentation of fire images in this study. Our method utilizes self-supervised attention foreground-aware pooling (SAP) and context-aware loss (CAL) to generate high-quality pseudo-labels, serving as substitutes for manual annotation. SAP collaborates with bounding box and class activation mapping (CAM) to generate a background attention map, which aids in the generation of accurate pseudo-labels. CAL further improves the quality of the pseudo-labels by incorporating contextual information related to the target objects, effectively reducing environmental noise. We conducted experiments on two publicly available UAV forest fire datasets: the Corsican dataset and the Flame dataset. Our proposed method achieved impressive results, with IoU values of 81.23% and 76.43% for the Corsican dataset and the Flame dataset, respectively. These results significantly outperform the latest weakly supervised semantic segmentation (WSSS) networks on forest fire datasets.

Funder

Chinese Academy of Forestry

Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3