Recent Progress on Functionalized Graphene Quantum Dots and Their Nanocomposites for Enhanced Gas Sensing Applications

Author:

Balakrishnan Thivyah1,Sagadevan Suresh2,Le Minh-Vien34ORCID,Soga Tetsuo5ORCID,Oh Won-Chun6ORCID

Affiliation:

1. Department of Chemical and Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia

2. Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia

3. Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam

4. Faculty of Chemical Engineering, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam

5. Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan

6. Department of Advanced Materials Science and Engineering, Hanseo University, Seosan 356-706, Republic of Korea

Abstract

Gas-sensing technology has witnessed significant advancements that have been driven by the emergence of graphene quantum dots (GQDs) and their tailored nanocomposites. This comprehensive review surveys the recent progress made in the construction methods and applications of functionalized GQDs and GQD-based nanocomposites for gas sensing. The gas-sensing mechanisms, based on the Fermi-level control and charge carrier depletion layer theory, are briefly explained through the formation of heterojunctions and the adsorption/desorption principle. Furthermore, this review explores the enhancements achieved through the incorporation of GQDs into nanocomposites with diverse matrices, including polymers, metal oxides, and 2D materials. We also provide an overview of the key progress in various hazardous gas sensing applications using functionalized GQDs and GQD-based nanocomposites, focusing on key detection parameters such as sensitivity, selectivity, stability, response and recovery time, repeatability, and limit of detection (LOD). According to the most recent data, the normally reported values for the LOD of various toxic gases using GQD-based sensors are in the range of 1–10 ppm. Remarkably, some GQD-based sensors exhibit extremely low detection limits, such as N-GQDs/SnO2 (0.01 ppb for formaldehyde) and GQD@SnO2 (0.10 ppb for NO2). This review provides an up-to-date perspective on the evolving landscape of functionalized GQDs and their nanocomposites as pivotal components in the development of advanced gas sensors.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3