Effect of Co Doping on the Physical Properties and Organic Pollutant Photodegradation Efficiency of ZnO Nanoparticles for Environmental Applications

Author:

Saadi Hajer1,Khaldi Othmen2ORCID,Pina João3ORCID,Costa Telma3ORCID,Seixas de Melo J. Sérgio3,Vilarinho Paula4,Benzarti Zohra15ORCID

Affiliation:

1. Laboratory of Multifunctional Materials and Applications (LaMMA), Department of Physics, Faculty of Sciences of Sfax, University of Sfax, Soukra Road km 3.5, B.P. 1171, Sfax 3000, Tunisia

2. LMOP(LR99ES17), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia

3. CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal

4. CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal

5. CEMMPRE, ARISE, Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal

Abstract

This paper presents a comprehensive investigation of the synthesis and characterization of Zn1−xCoxO (0 ≤ x ≤ 0.05) nanopowders using a chemical co-precipitation approach. The structural, morphological, and vibrational properties of the resulting ZnO nanostructures were assessed through X-ray diffraction, scanning electronic microscopy, and Raman spectroscopy to examine the influence of cobalt doping. Remarkably, a notable congruence between the experimental results and the density functional theory (DFT) calculations for the Co-doped ZnO system was achieved. Structural analysis revealed well-crystallized hexagonal wurtzite structures across all samples. The SEM images demonstrated the formation of spherical nanoparticles in all the samples. The vibrational properties confirmed the formation of a hexagonal wurtzite structure, with an additional Raman peak corresponding to the F2g vibrational mode characteristic of the secondary phase of ZnCo2O4 observed at a 5% cobalt doping concentration. Furthermore, a theoretical examination of cobalt doping’s impact on the elastic properties of ZnO demonstrated enhanced mechanical behavior, which improves stability, recyclability, and photocatalytic activity. The photocatalytic study of the synthesized compositions for methylene blue (MB) dye degradation over 100 min of UV light irradiation demonstrated that Co doping significantly improves photocatalytic degradation. The material’s prolonged lifetime, reduced rate of photogenerated charge carrier recombination, and increased surface area were identified as pivotal factors accelerating the degradation process. Notably, the photocatalyst with a Zn0.99Co0.01O composition exhibited exceptional efficiency compared to that reported in the literature. It demonstrated high removal activity, achieving an efficiency of about 97% in a shorter degradation time. This study underscores the structural and photocatalytic advancements in the ZnO system, particularly at lower cobalt doping concentrations (1%). The developed photocatalyst exhibits promise for environmental applications owing to its superior photocatalytic performance.

Funder

PRR-Plano de Recuperação e Resiliência

FCT—Fundação para a Ciência e a Tecnologia

ARISE

CICECO–Aveiro Institute of Materials

AM4SP-Additive Manufacturing for Smart Plastics

QREN-Mais Centro

Portuguese Agency for Scientific Research, “Fundação para a Ciência e a Tecnologia”

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3