Abstract
Canine malignant melanoma (CMM) is a locally and systemically aggressive cancer that shares many biological and clinical characteristics with human mucosal melanoma. Hypofractionated radiation protocols have been used to treat CMM but little is known about its radiation biology. This pilot study is designed to investigate response of CMM cell lines to various ionizing radiations and cytotoxic agents to better understand this canine cancer. Four CMM cell lines were evaluated by clonogenic survival assay under aerobic and hypoxic conditions and parameters such as alpha beta (α/β) ratio, oxygen enhancement ratio (OER), and relative biological effectiveness (RBE) were calculated after 137Cs, 6 megavoltage (MV) photon, or carbon ion irradiation. Six cytotoxic agents (cisplatin, camptothecin, mitomycin C, bleomycin, methtyl methanesulfonate and etoposide) were also assessed for their efficacy. Under aerobic condition with 6 MV photon, the α/β ratio of the four cell lines ranged from 0.3 to >100, indicating a wide variation of cellular sensitivity. The ratio increased under hypoxic condition compared to aerobic condition and this was more dramatic in 137Cs and 6 MV photon treatments. OER of carbon was lower than 137Cs at D10 in 3 of the 4 cell lines. The RBE values generally increased with the increase of LET. Different cell lines showed sensitivity/resistance to different cytotoxic agents. This study revealed that CMM has a wide range of radiosensitivity and that hypoxia can reduce it, indicating that widely used hypofractionated protocols may not be optimal for all CMM patients. Several cytotoxic agents that have never been clinically assessed can improve treatment outcome.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献