A Deep Similarity Metric Method Based on Incomplete Data for Traffic Anomaly Detection in IoT

Author:

Kang Xu,Song BinORCID,Sun Fengyao

Abstract

In recent years, with the development of the Internet of Things (IoT) technology, a large amount of data can be captured from sensors for real-time analysis. By monitoring the traffic video data from the IoT, we can detect the anomalies that may occur and evaluate the security. However, the number of traffic anomalies is extremely limited, so there is a severe over-fitting problem when using traditional deep learning methods. In order to solve the problem above, we propose a similarity metric Convolutional Neural Network (CNN) based on a channel attention model for traffic anomaly detection task. The method mainly includes (1) A Siamese network with a hierarchical attention model by word embedding so that it can selectively measure similarities between anomalies and the templates. (2) A deep transfer learning method can automatically annotate an unlabeled set while fine-tuning the network. (3) A background modeling method combining spatial and temporal information for anomaly extraction. Experiments show that the proposed method is three percentage points higher than deep convolutional generative adversarial network (DCGAN) and five percentage points higher than AutoEncoder on the accuracy. No more time consumption is needed for the annotation process. The extracted candidates can be classified correctly through the proposed method.

Funder

National Natural Science Foundation of China

Fundamental Research Funds of Ministry of Education and China Mobile

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. A Study on Security Issues and Challenges in IoT;Vijayalakshmi;Eng. Sci. Manag. Res.,2016

2. A survey of network anomaly detection techniques

3. Social vehicle swarms: a novel perspective on socially aware vehicular communication architecture

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3