Kerf Geometry and Surface Roughness Optimization in CO2 Laser Processing of FFF Plates Utilizing Neural Networks and Genetic Algorithms Approaches

Author:

Kechagias John D.1ORCID,Fountas Nikolaos A.2ORCID,Ninikas Konstantinos1ORCID,Vaxevanidis Nikolaos M.2ORCID

Affiliation:

1. Design & Manufacturing Lab (DML), Department of FWSD, University of Thessaly, 43100 Karditsa, Greece

2. Department of Mechanical Engineering, School of Pedagogical and Technological Education (ASPETE), 15122 Amarousion, Greece

Abstract

This work deals with the experimental investigation and multi-objective optimization of mean kerf angle (A) and mean surface roughness (Ra) in laser cutting (LC) fused filament fabrication (FFF) 3D-printed (3DP), 4 mm-thick polylactic acid (PLA) plates by considering laser feed (F) and power (P) as the independent control parameters. A CO2 laser apparatus was employed to conduct machining experiments on 27 rectangular workpieces. An experimental design approach was adopted to establish the runs according to full-combinatorial design with three repetitions, resulting in 27 independent experiments. A customized response surface experiment was formulated to proceed with regression equations to predict the responses and examine the solution domain continuously. After examining the impact of F and P on mean A and mean Ra, two reliable prediction models were generated to model the process. Furthermore, since LC is a highly intricate, non-conventional machining process and its control variables affect the responses in a nonlinear manner, A and Ra were also predicted using an artificial neural network (NN), while its resulting performance was compared to the predictive regression models. Finally, the regression models served as objective functions for optimizing the responses with an intelligent algorithm adopted from the literature.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3