Multipoint Energy-Balanced Laser-Ultrasonic Transducer Based on a Thin-Cladding Fiber

Author:

Zhou Shengnan12,Zhou Cheng12,Tian Jiajun12ORCID,Yao Yong1ORCID

Affiliation:

1. School of Electronic and Information Engineering, Harbin Institute of Technology, Shenzhen 518055, China

2. Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450003, China

Abstract

This study proposes a novel multipoint transducer system by utilizing the single-mode-multimode-thin-cladding fiber (SMTC) structure. This structure leverages the disparity in mode field diameter between the multimode fiber (MMF) and thin-cladding fiber (TCF) to generate high-amplitude ultrasonic signals safely and efficiently. The fabricated transducer exhibits signal amplitudes 2–3-fold higher compared to conventional laser-ultrasonic transducers. Simulation analysis investigates the impact of the length of the MMF and the diameter of the TCF on coupling efficiency. The coupling efficiency of individual transducer units can be accurately controlled by adjusting the length of the MMF. A three-point energy-balanced laser-ultrasonic transducer system was achieved, with improved energy conversion efficiencies, and the optimal thickness of candle soot nanoparticles (CSNPs) is experimentally determined. Additionally, we carried out experiments to compare the performance of the proposed SMTC-based transducer system under different material conditions using two different photoacoustic materials: graphite–epoxy resin and candle soot nanoparticle–polydimethylsiloxane (CSNP–PDMS) composite. CSNPs, as a cost-effective and easy-to-prepare composite material, exhibit higher photoacoustic conversion efficiency compared to graphite–epoxy resin. The proposed system demonstrates the potential for applications in non-destructive testing techniques.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Program Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3