Application of Neural Network Feedforward in Fuzzy PI Controller for Electric Vehicle Thermal Management System: Modeling and Simulation Studies

Author:

Fei Fan1ORCID,Wang Dong1ORCID

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai 201800, China

Abstract

The electric vehicle thermal management system (EVTMS) plays a crucial role in ensuring battery efficiency, driving range, and passenger comfort. However, EVTMSs still face unresolved challenges, such as accurate modeling, compensating for temperature variations, and achieving efficient control strategies. Addressing these issues is crucial for enhancing the performance, reliability, and energy efficiency of electric vehicles. Therefore, this study presents a cooling EVTMS model, considering both the battery pack temperature and the cabin comfort, and utilizes the prediction of neural network as a feedforward in a fuzzy PI controller to compensate for the model temperature variations. The simulation results reveal that, compared with PI controller and MPC, the neural network fuzzy PI (NN-Fuzzy PI) controller can well predict and compensate for the system’s nonlinear characteristics as well as the time-delay caused by heat transfer, achieving superior control performance and reducing energy consumption. The battery pack temperature and PMV fluctuations are effectively constrained within [−0.5, 0.5] and [−0.1, 0.1], reducing up to 150% and 164%, and the energy consumption of the pump and compressor are reduced by up to 0.23 and 100.1 KJ, with ranges of 18% and 2.68%. Meanwhile, the neural network feedforward also works effectively in different controllers. The findings of this research can provide valuable insights for TMS engineers to select advanced control strategies.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3