A New Hybrid Model Based on SCINet and LSTM for Short-Term Power Load Forecasting
Author:
Affiliation:
1. School of Information Engineering, Nanchang University, Nanchang 330031, China
2. Shenzhen Research Institute, Huazhong University of Science and Technology, Shenzhen 518000, China
3. EAST Group Co., Ltd., Dongguan 523808, China
Abstract
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangxi Province of China
National College Students Innovation and Entrepreneurship Training Program
Publisher
MDPI AG
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Link
https://www.mdpi.com/1996-1073/17/1/95/pdf
Reference41 articles.
1. A hybrid system for forecasting 24-h power load profile for Polish electric grid;Brodowski;Appl. Soft Comput.,2017
2. Deep learning-based interval state estimation of AC smart grids against sparse cyber attacks;Wang;IEEE Trans. Ind. Inform.,2018
3. Electric load forecasting: Literature survey and classification of methods;Alfares;Int. J. Forecast.,2010
4. Conditional residual modeling for probabilistic load forecasting;Wang;IEEE Trans. Power Syst.,2018
5. Improve the unit commitment scheduling by using the neural-network-based short-term load forecasting;Saksornchai;IEEE Trans. Ind. Appl.,2005
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Short-Term Electric Load Forecasting Based on Signal Decomposition and Improved TCN Algorithm;Energies;2024-04-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3