Image Inpainting Using Two-Stage Loss Function and Global and Local Markovian Discriminators

Author:

Li Chen,He KaiORCID,Liu Kun,Ma Xitao

Abstract

Image inpainting networks can produce visually reasonable results in the damaged regions. However, existing inpainting networks may fail to reconstruct the proper structures or tend to generate the results with color discrepancy. To solve this issue, this paper proposes an image inpainting approach using the proposed two-stage loss function. The loss function consists of different Gaussian kernels, which are utilized in different stages of network. The use of our two-stage loss function in coarse network helps to focus on the image structure, while the use of it in refinement network is helpful to restore the image details. Moreover, we proposed a global and local PatchGANs (GAN means generative adversarial network), named GL-PatchGANs, in which the global and local markovian discriminators were used to control the final results. This is beneficial to focus on the regions of interest (ROI) on different scales and tends to produce more realistic structural and textural details. We trained our network on three popular datasets on image inpainting separately, both Peak Signal to Noise ratio (PSNR) and Structural Similarity (SSIM) between our results, and ground truths on test images show that our network can achieve better performance compared with the recent works in most cases. Besides, the visual results on three datasets also show that our network can produce visual plausible results compared with the recent works.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3