Data-Driven Leak Localization in Urban Water Distribution Networks Using Big Data for Random Forest Classifier

Author:

Lučin IvanaORCID,Lučin Bože,Čarija Zoran,Sikirica Ante

Abstract

In the present paper, a Random Forest classifier is used to detect leak locations on two different sized water distribution networks with sparse sensor placement. A great number of leak scenarios were simulated with Monte Carlo determined leak parameters (leak location and emitter coefficient). In order to account for demand variations that occur on a daily basis and to obtain a larger dataset, scenarios were simulated with random base demand increments or reductions for each network node. Classifier accuracy was assessed for different sensor layouts and numbers of sensors. Multiple prediction models were constructed for differently sized leakage and demand range variations in order to investigate model accuracy under various conditions. Results indicate that the prediction model provides the greatest accuracy for the largest leaks, with the smallest variation in base demand (62% accuracy for greater- and 82% for smaller-sized networks, for the largest considered leak size and a base demand variation of ±2.5%). However, even for small leaks and the greatest base demand variations, the prediction model provided considerable accuracy, especially when localizing the sources of leaks when the true leak node and neighbor nodes were considered (for a smaller-sized network and a base demand of variation ±20% the model accuracy increased from 44% to 89% when top five nodes with greatest probability were considered, and for a greater-sized network with a base demand variation of ±10% the accuracy increased from 36% to 77%).

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3