Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil

Author:

Stolarski Mariusz JerzyORCID,Szczukowski Stefan,Krzyżaniak MichałORCID,Tworkowski Józef

Abstract

Bioenergy plays a major role as a renewable energy source in the European Union. Solid biomass is derived mainly as wood from forests and wood processing plants. Willow plantations set up on marginal lands can be a supplementary source of wood for energy generation. This study aimed to determine the energy value of yield and the thermophysical properties and elemental composition of the biomass of 7-year rotation willow harvested on marginal soil. Three varieties and three clones were cultivated in the Eko-Salix system on three marginal soils in northern Poland: riparian, alluvial soil, classified as heavy complete humic alluvial soil (Obory); organic, peat–muck soil formed from peat (Kocibórz); very heavy mineral clay soil (Leginy). Favourable conditions for obtaining high energy value biomass were at Kocibórz and Obory with a high groundwater level. The energy value of biomass at Leginy was lower than at Kocibórz and Obory (by 33% and 26%, respectively). The Ekotur variety had the significantly highest yield energy value (217 GJ ha−1 year−1) among the varieties and clones under study. This feature at Kocibórz and Obory was 288 and 225 GJ ha−1 year−1, respectively, and 139 GJ ha−1 year−1 at Leginy. Moreover, the biomass of this variety contained less ash (1.1% d.m.), sulphur (0.03% d.m.) and nitrogen (0.28% d.m.), which is beneficial from the energy-use perspective. Notably, the yield energy value of the UWM 095 clone biomass was also high (167 GJ ha−1 year−1). This study showed that willow grown in the Eco-Salix system can be a significant source of energy contained in good-quality woody biomass.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3