Algal Morphological Identification in Watersheds for Drinking Water Supply Using Neural Architecture Search for Convolutional Neural Network

Author:

Park Jungsu,Lee Hyunho,Park Cheol Young,Hasan Samiul,Heo Tae-Young,Lee Woo HyoungORCID

Abstract

An excessive increase in algae often has various undesirable effects on drinking water supply systems, thus proper management is necessary. Algal monitoring and classification is one of the fundamental steps in the management of algal blooms. Conventional microscopic methods have been most widely used for algal classification, but such approaches are time-consuming and labor-intensive. Thus, the development of alternative methods for rapid, but reliable algal classification is essential where an advanced machine learning technique, known as deep learning, is considered to provide a possible approach for rapid algal classification. In recent years, one of the deep learning techniques, namely the convolutional neural network (CNN), has been increasingly used for image classification in various fields, including algal classification. However, previous studies on algal classification have used CNNs that were arbitrarily chosen, and did not explore possible CNNs fitting algal image data. In this paper, neural architecture search (NAS), an automatic approach for the design of artificial neural networks (ANN), is used to find a best CNN model for the classification of eight algal genera in watersheds experiencing algal blooms, including three cyanobacteria (Microcystis sp., Oscillatoria sp., and Anabaena sp.), three diatoms (Fragilaria sp., Synedra sp., and two green algae (Staurastrum sp. and Pediastrum sp.). The developed CNN model effectively classified the algal genus with an F1-score of 0.95 for the eight genera. The results indicate that the CNN models developed from NAS can outperform conventional CNN development approaches, and would be an effective tool for rapid operational responses to algal bloom events. In addition, we introduce a generic framework that provides a guideline for the development of the machine learning models for algal image analysis. Finally, we present the experimental results from the real-world environments using the framework and NAS.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3