Impact of Meteorological Conditions on PM2.5 Pollution in Changchun and Associated Health Risks Analysis

Author:

Fang Chunsheng123ORCID,Li Xinlong12,Li Juan12,Tian Jiaqi12ORCID,Wang Ju123

Affiliation:

1. College of New Energy and Environment, Jilin University, Changchun 130015, China

2. Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130015, China

3. Jilin Province Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130015, China

Abstract

The escalating concern regarding increasing air pollution and its impact on the health risks associated with PM2.5 in developing countries necessitates attention. Thus, this study utilizes the WRF-CMAQ model to simulate the effects of meteorological conditions on PM2.5 levels in Changchun, a typical city in China, during January 2017 and January 2020. Additionally, it introduces a novel health risk-based air quality index (NHAQI) to assess the influence of meteorological parameters and associated health risks. The findings indicate that in January 2020, the 2-m temperature (T2), 10-m wind speed (WS10), and planetary boundary layer height (PBLH) were lower compared to those in 2017, while air pressure exhibited a slight increase. These meteorological parameters, characterized by reduced wind speed, heightened air pressure, and lower boundary layer height—factors unfavorable for pollutant dispersion—collectively contribute to the accumulation of PM2.5 in the atmosphere. Moreover, the NHAQI proves to be more effective in evaluating health risks compared to the air quality index (AQI). The annual average decrease in NHAQI across six municipal districts from 2017 to 2020 amounts to 18.05%. Notably, the highest health risks are observed during the winter among the four seasons, particularly in densely populated areas. The pollutants contributing the most to the total excess risk (ERtotal) are PM2.5 (45.46%), PM10 (33.30%), and O3 (13.57%) in 2017, and PM2.5 (67.41%), PM10 (22.32%), and O3 (8.41%) in 2020. These results underscore the ongoing necessity for PM2.5 emission control measures while emphasizing the importance of considering meteorological parameters in the development of PM2.5 reduction strategies.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3