Elucidating Decade-Long Trends and Diurnal Patterns in Aerosol Acidity in Shanghai

Author:

Lv Zhixiao1,Ye Xingnan1ORCID,Huang Weijie1,Yao Yinghui1,Duan Yusen2

Affiliation:

1. Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China

2. Shanghai Environmental Monitoring Center, Shanghai 200235, China

Abstract

Aerosol acidity is a critical factor affecting atmospheric chemistry. Here, we present a study on annual, monthly, and daily variations in PM2.5 pH in Shanghai during 2010–2020. With the effective control of SO2 emissions, the NO2/SO2 ratio increased from 1.26 in 2010 to 5.07 in 2020 and the NO3−/SO42− ratio increased from 0.68 to 1.49. Aerosol pH decreased from 3.27 in 2010 to 2.93 in 2020, regardless of great achievement in reducing industrial SO2 and NOx emissions. These findings suggest that aerosol acidity might not be significantly reduced in response to the control of SO2 and NOx emissions. The monthly variation in pH values exhibited a V-shape trend, mainly attributable to aerosol compositions and temperature. Atmospheric NH3 plays the decisive role in buffering particle acidity, whereas Ca2+ and K+ are important acidity buffers, and the distinct pH decline during 2010–2016 was associated with the reduction of Ca2+ and K+ while both temperature and SO42− were important drivers in winter. Sensitivity tests show that pH increases with the increasing relative humidity in summer while it is not sensitive to relative humidity in winter due to proportional increases in Hair+ and aerosol liquid water content (ALWC). Our results suggest that reducing NOx emissions in Shanghai will not significantly affect PM2.5 acidity in winter.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3