Short Review of Current Numerical Developments in Meteorological Modelling

Author:

Steppeler Jürgen1

Affiliation:

1. Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1, 20095 Hamburg, Germany

Abstract

This paper reviews current numerical developments for atmospheric modelling. Numerical atmospheric modelling now looks back to a history of about 70 years after the first successful numerical prediction. Currently, we face new challenges, such as variable and adaptive resolution and ultra-highly resolving global models of 1 km grid length. Large eddy simulation (LES), special applications like the numerical prediction of pollution and atmospheric contaminants belong to the current challenges of numerical developments. While pollution prediction is a standard part of numerical modelling in case of accidents, models currently being developed aim at modelling pollution at all scales from the global to the micro scale. The methods discussed in this paper are spectral elements and other versions of Local-Galerkin (L-Galerkin) methods. Classic numerical methods are also included in the presentation. For example, the rather popular second-order Arakawa C-grid method can be shown to result as a special case of an L-Galerkin method using low-order basis functions. Therefore, developments for Galerkin methods also apply to this classic C-grid method, and this is included in this paper. The new generation of highly parallel computers requires new numerical methods, as some of the classic methods are not well suited for a high degree of parallel computing. It will be shown that some numerical inaccuracies need to be resolved and this indicates a potential for improved results by going to a new generation of numerical methods. The methods considered here are mostly derived from basis functions. Such methods are known under the names of Galerkin, spectral, spectral element, finite element or L-Galerkin methods. Some of these new methods are already used in realistic models. The spectral method, though highly used in the 1990s, is currently replaced by the mentioned local L-Galerkin methods. All methods presented in this review have been tested in idealized numerical situations, the so-called toy models. Waypoints on the way to realistic models and their mathematical problems will be pointed out. Practical problems of informatics will be highlighted. Numerical error traps of some current numerical approaches will be pointed out. These are errors not occurring with highly idealized toy models. Such errors appear when the test situation becomes more realistic. For example, many tests are for regular resolution and results can become worse when the grid becomes irregular. On the sphere no regular grids exist, except for the five derived from Platonic solids. Practical problems beyond mathematics on the way to realistic applications will also be considered. A rather interesting and convenient development is the general availability of computer power. For example, the computational power available on a normal personal computer is comparable to that of a supercomputer in 2005. This means that interesting developments, such as the small sphere atmosphere with a resolution of 1 km and a spherical circumference between 180 and 360 km are available to the normal owner of a personal computer (PC). Besides the mathematical problems of new approaches, we will also consider the informatics challenges of using the new generation of models on mainframe computers and PCs.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3